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A general method for obtaining rational approximations to formal power series
is defined and studied. This method is based on approximate quadrature for
mulas. Newton-Cotes and Gauss quadrature methods are used. It is shown
that Pade approximants and the E-algorithm are related to Gaussian formulas
while linear summation processes are related to Newton-Cotes formulas. An
example is exhibited which shows that Pade approximation is not always op
timal. An application to e-t is studied and a method for Laplace transform
inversion is proposed.

1. STATEMENT OF THE PROBLEM

Let f be the formal power series

00

jet) = L Citi .
i~O

If the series in the right-hand side converges, then j(t) is equal to its sum;
if the series diverges,jrepresents its analytic continuation (assumed to exist).
We consider a lineal' functional C associated with f satisfying

C(xi ) = Ci, i = 0, 1'00' ;

C can be regarded as a formal integration process. The basic idea is that

where C acts on the variable x and where t is a parameter. Thus computing
f(t) for a fixed value of t is nothing else than computing c«1 - xt)-l) since
c«(l - xt)-l) = c(l + xt + x 2t 2+ ...) = Co + CIt + c2t 2+ ....

It arises very often in practice that only a few coefficients Ci of the series
are known or that it converges too slowly. Thus the function (I - xt)-l
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has to be teplaced by a polynomial P and I(t) is approximated by c(P):
This is an approximate quadrature formula.

There are two main ways for replacing a function by a polynomial. The
first one is to use interpolation polynomials which leads to the so-called
interpolatory quadrature formulas. The second is to use certain other
approximation polynomials; the corresponding quadrature formulas will be
caIIed approximatory quadrature formulas. They are not studied herein.
The results presented in this paper have some connection with the ideas of
Larkin [8, 9] on the approximation of a linear functional but this connection
has not yet been studied in detail.

2. INTERPOLATORY QUADRATURE FORMULAS

Let Xl' X 2 , ••• , X" be the (complex distinct) points of interpolation. These
points can also depend on k, that is we can have a triangular set of interpo
lation points x1") for i = 1,... , k. Set

v(X) = (x - Xl) ... (X - X,,),

w(t) = c ( v(x; =~(t) ),

where c acts on the variable X and t is a parameter. Setting v(x) = ao +
alx + ... + a"x", it is easily seen that w is a polynomial of degree k - 1:
w(t) = bo + bIt + ... + b"_lt k

-
l with

"-i-l

bi = L Cjai+j+l'
j~O

i = 0, ... , k - 1. (I)

Finally, note that the Lagrange interpolation polynomial of a function g
at Xl , X 2 , ... , X" is

THEOREM 1. If P is the Lagrange interpolation polynomial of g(x) =

(1 - Xt)-l constructed on the distinct abscissae Xl , ... , X" , then

c(P) = w(t)/iJ(t),

where

and
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Proof

P(X) = f (v(x) - v<;i))/(x - Xi) 1
i=l v (Xi) 1 - Xi t .

By using the definition of 11', we obtain

C(P) - f W(Xi) 1 = X f tt:(Xi) _1_
- i~l V'(Xi) 1 - Xi t i~l v (Xi) X - Xi
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with X = lit. This is the partial fraction decomposition of xw(x)lv(x). Thus

w(X) 1 W(t-l) w(t)
x--=---=--

v(x) t V(t-l) v(t)'

Let Alk) = w(xi)lv'(xi)' Then c(P) = ~:~l Alk\I - xit)-l is the Newton
Cotes quadrature formula. Expressing the interpolation polynomial P as the
ratio of two determinants we get

Co CI - - - Ck-l
1 Xl - - - X~-l

C(P) = (2)

Letting

(

1 1 )
V

_Xl - - - Xk
k- ---------

k-l k-lXl - - - Xk

then, by a formula given by Magnus [13, p.i 17]

c(P) = (V;IYk , gk)'

THEOREM 2. Under the assumptions of Theorem 1

(3)

C(P) - f(t) = O(tk ), (as t -+ 0)

00

c(P) = L: eiti
i~O

with i=O,I, ... ,

and ei = cifor i = 0,... , k - 1.
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for i=O,I, ....

From the fact that the Newton-Cotes quadrature formula is exact for
polynomials of degree less than k, it follows that c(P) - f(t) = O(tk) and
thus ei = Ci for i = 0,... , k - 1.

Let us now study the error.

THEOREM 3. Under the assumptions of Theorem 1

t
k (v(X) )c(P) - f(t) = ~() c 1 .v t xt-

Proof

(
v(x) - vet-I») (tkv(x) - tkV(t-I»)wet) = tk-IW(t-I) = t,,-IC = C

X - t-1 xt - I '

= tkc ( vex) ) _ vet) c ( 1 )
xt - 1 xt - 1

and the result of the theorem immediately follows.

Remark 1. From the proof of the preceeding theorem we get

wet) = _1_ c (v(t-I) - vex»)
v(t) vet-I) 1 - xt .

This relationship shows that any interpolatory quadrature method for
(1 - Xt)-I can be looked as replacing (l - xt)-l by (l - v(x)/v(t-1)/(l - xt)
with vex) = (x - Xl) ... (x - Xk)' From this theorem we also obtain

t k 00

c(P) - f(t) = ~() L dit i
V t i~O

with di = -c(xiv) = -(aOci + alci+I + ... + akCi+k)'
Although the abscissae are not always equidistant such interpolatory

quadrature methods will be called Newton-Cotes methods. The approximants
obtained will be called Pade-type approximants and will be denoted by
(k - l/k)tCt), wherefis the function to be approximated and t is the variable.

Let us now turn to Gaussian quadrature formulas. It is well known that,
in Gaussian methods, the interpolation points Xi are chosen so that the
quadrature formula is exact for polynomials of degree less than 2k. It is also
well known that the Xi are the roots of orthogonal polynomials. Thus let us
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now consider the family of orthogonal polynomials {Pic} with respect to the
functional c, that is,

for i = 0,... , k - 1,

where k is the degree of Pk • Such polynomials are given by

Co C1 - - - Clc
C1 C2 - - - Ck+!

PIc(x) = - - - - - - - - - - - -
Ck-1 Ck C2k-1

I x - - - x k

Let us now chose the x/s, for fixed k, as the roots of Pic. We assume that
these roots are distinct and that the Hankel determinants

C1 - - - CIc-1
C2 - - - Ck

are all different from zero such that Pk has the exact degree k. Let Qk be the
associated polynomials defined by

and let PIc(t) = t lcPIc(t-1), Qit) = t lc-1QlcV-1). Then Pic is identical to v apart
from a multiplying factor and QIc is identical to w apart from the same factor.
Thus

(4)

and Theorems I, 2, and 3 remain true for Gaussian quadrature formulas.
Moreover we get:

THEOREM 4. If the Xi are the roots of Pic which are assumed to be distinct,
then

ei = Ci for i = 0,... , 2k - I,

C(P) - I(t) = O(t2k),

c(P) _ I(t) = !2k C ( XkPIc(X) ) =~ C ( Plc
2
(X) ),

Pk(t) xt - 1 Pk2(t) xt - 1

c(P) = [k - Ifklt(t),
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where [pjqMt) is the Pade approximant tofwhose numerator has degree p and
whose denominator has degree q.

Proof Gaussian quadrature formulas are exact for polynomials of degree
less than 2k; then the first two statements ofthe theorem immediately follow.
The identity with Pade approximants comes out from the unicity of Pade
approximants or from their definition as the ratio of two determinants.
From the orthogonality property of Pk we get

C( v(x) ) = c(v(x)(l -t- xt + 00'» = c(v(X)(Xktk + Xk+ltkt-1 + 00-)
I - xt

(
XkV(X) )

= tkc
1 - xt

and the first part of the third statement follows. (Pk(x) - Pk(t-l»/(1 - xt) is
a polynomial of degree k - 1 in x; then

which ends the proof of this theorem.

Remark 2. Formulas (2) and (3) provide new expressions for Pade
approximants.

Remark 3. From the third result of Theorem 4 it is easy to prove that

f(t) - [k - llkJr(t) = Hk+1(co) t 2k + O(t2k+l).
Hk(cO)

Remark 4. For arbitrary distinct Xi we get f(t) - c(P) = O(t k ) but the
computation of (k - 11k) only requires the knowledge of Co , ... , Ck-l . If the
Xi are the roots of Pk , thenf(t) - c(P) = O(t 2k) but, as it can be seen frqm
(4), the computation of [k - 11k] requires the knowledge of Co , ... , C2k- 1 •

Thus, from the algebraic point of view, nothing is gained by using Pade
approximants and Gaussian quadrature formulas with k points have to be
compared with Pade-type approximants using 2k points. Moreover, in
Pade-type approximants, the poles of the rational approximation w(t)jv(t)
can be arbitrarily chosen since the roots of v are equal to XiI. The relation
ships (1) between the coefficients of the numerator and those of the
denominator come out from equating the coefficients of t i to zero for
i = 0, , k - 1 in f(t) - c(P). If the coefficients of t i must also be zero for
i = k, , 2k - 1 then we must have c(xiv(x» = ° for i = 0,... , k - 1
which shows that v is identical to P k • However iff is a rational function of
degree k - lover degree k then, for arbitrary distinct Xi' (k - IjkMt) is
not identical to fwhile the Pade approximant [k - IjkMt) is.
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Remark 5. The difference between the approximants obtained by
Newton-Cotes formulas or by Gauss formulas is that the first are linear
with respect to the c;'s while the second are not.

These quadrature methods can be applied to the computation of the limit S
of a sequence {Sn}' Let us consider the series f defined by Ci = Si+l - Si .
Then S = So +1(1) will be approximated by So + w(1)/v(1). It is easy to see
that So + w(I)/v(l) = (aoSo + ... + a"S,,)/(ao + ... + a,,). In the case where
the x;'s are arbitrarily chosen this is a summation method. If the x;'s are the
roots of PIc then we obtain E~~) given by the E-algorithm of Wynn [19]. This
fact had been proved some years ago by Brezinski [2] in a very different
way.

A consequence of Theorem 4 is the

COROLLARY 1. Under the assumptions of Theorem 1 and if v(x) =
(x - Xl) ... (X - x,,) = u(x) P-",(x) with m ~ k ~ 2m then

w(t)/v(t) = [m - l/mlt(t).

Proof

w(t) = C (u(X) Pm(x) - u(t) Pm(t))
x-t

= c (u(t) Pm(x) - Pm(t) + Pm(x) u(x) - u(t) )
x-t x-t

= u(t) c ( Pm(x) - Pm(t) )
x-t

since Pm is orthogonal to every polynomial of degree less than m and since
the degree of u is k - m ~ m. Thus w(t)/v(t) = [m - l/mlt(t) by Theorem 4.

Remark 6. Replacing v by uPm in the error term of Theorem 3 we get the
error term of Theorem 4 since

c ( v(x) ) = U(t-l) C ( Pm(x) ).
xt - 1 xt - 1

The two preceeding results show that the theory of general orthogonal
polynomials plays a fundamental role in the algebraic theory of Pade
approximants. In fact almost all the known algebraic results about Pade
approximants follow in a very easy and natural way from the theory of
orthogonal polynomials and new results can also be obtained [3,4].

Let us now mix up the two preceding methods in the following way: Let
some of the Xi' say Xl'"'' Xm , be arbitrarily chosen and let the remainding
points, Xm+l ,... , x", be taken such that the quadrature method be exact for
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polynomials of degree less than 2k - m. Such quadrature formulas exist and
are well known. Let u(x) = (x - Xl) ... (X - xm ) and let the functional c
be defined by

i = 0, 1'00' .

Let Pk - m be the orthogonal polynomial of degree k - m with respect to c.
We assume that it has the exact degree k - m; then Xm+1 '00', Xk must be
chosen as the roots of Pk - m • Thus we have

veX) = Pk-m(x) U(X).

wis defined in the usual way from c and c(P) = w(t)jv(t). For such quadrature
formulas we get:

THEOREM 5. If Xl'"'' Xm are arbitrary distinct points and if Xm+1 , ... , Xk

are the roots ofPk- m that are assumed to be distinct and distinct from Xl'"'' X m ,

then

ei = Ci for i = 0"00' 2k - m - 1,

c(P) - J(t) = O(t2k- m ),

_ _ t 2k-
rn (Xk-mv(x))

c(P) J(t) - -() c 1v t xt-

I ( vex) Pk--m(x) )
= V(t-l) Pk_m(t-l) C xt - I .

Proof Essentially the same as for Theorem 4. The first two statements
are properties of such quadrature methods. The last two statements follow
from Theorem 3 and from the orthogonality properties of Pk - m •

Remark 7. The computation of such a quadrature formula requires the
knowledge of Co , ... , C2k-m-1 •

Let now P be the general Hermite interpolation polynomial such that

P(j)( .) _ ~ ( 1 )
x. - dxi 1 - xt "'="'i'

i = 1'00" n andj = 0'00" k i - 1 ?: O. (5)

We assume that the interpolation points Xi are distinct. Let k = :L;=l k i and

Let w, v and wbe defined as above. We get:
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THEOREM 6. Let P be the general Hermite interpolation polynomial which
is assumed to satisfy the preceding conditiorzs; then

c(P) = w(t)jiJ(t),

_ k _ t k (v(x) )
c(P) - f(t) - OCt ) - vet) c xt _ I .

Proof It is well known that the general Hermite interpolation polynomial
can be deduced from the Lagrange interpolation polynomial by continuity
arguments when some points coincide. Thus the first part of the theorem
immediately follows. The proof of the second part of the theorem is as in
Theorem 3.

Remark 8. This theorem can also be proved by writing down P and
showing that c(P) is the partial fraction decomposition of w(t)jv(t).

Remark 9. v has the exact degree k and the computation of v(t)jw(t)
requires the knowledge of Co ,... , Ck-l .

Remark 10. If vex) = (x - XJk1 ... (x - xn)kll = U(X) Pm(X) with m ::(
k ::( 2m then Corollary 1 applies and w(t)jV(t) = [m - Ijmlt(t). In particular
if k i = 2Vi and if Xl'"'' Xn are the roots of Pn then W(t)jv(t) = [n - Ijnl,(t).
Replacing v by Pn2 in the error term of Theorem 6 we get the result of
Theorem 4. If vex) = Pk(x) then c(P) = [k - Ijkl,(t) which shows that the
roots of P k have not to be distinct as in Theorem 4 but that, in case of
multiple roots, P must be taken as the general Hermite interpolation
polynomial.

Remark 11. Ifn = I then vex) = (x - Xl) and w(t)jv(t) = w(t)j(l - xlt)k.
In particular if Xl = 0 then

k tk
wet) = c (X - ) = c + c t + ... + c tk - l

X - t k-l k-2 0'

w(t)jv(t) = Co + CIt + ... + Ck_It k- 1 and P is the Taylor interpolation
polynomial at Xl = 0 that is P(x) = 1 + xt + '" + Xk-It k- l .

Remark 12. Conversely let

with k = L~~l k i , let Xl'"'' Xn be distinct and let w(x), vet) and wet) be
defined in the usual way. Then W(t)jiJ(t) is a rational approximation to f(t)
obtained by replacing (1 - xt)-l by its general Hermite interpolation
polynomial such that (5) holds and then computing c(P).
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All the preceding rational approximations have the same form W(t)jv(l)
and a general compact formula which generalizes Nuttall's compact formula
[16] can be derived for them. The basic idea for such a compact formula
in the case ofPade approximants for some special series is due to Magnus [14]
and we only extend here this idea. It is easy to see that

I 1'(1-1) - v(x)

v(t-1) I - xl

is a polynomial of degree k - I in x whose coefficients depend on t. Let {qn}
be any sequence of polynomials such that qn has the exact degree n for all n.
Thus

and, by Remark 1

For i = 0,... , k - 1 we get

That is,

(

c«1 - Xl) qo2) c«(l - Xl) qoql) c«(l - Xl) qoqk-1») ( f30 )
c«(l - Xl) qlqO) c«(l - Xl) ql2) c«1 - xt) q1qk-l) f31

c«(l - Xl) qk-1qO) c«(l - Xl) qk-1q1) c«1 - xt) q~-1) ,f3k-l

with c; = c(qi(x)(1 - v(x)/V(l-l». Let V be the matrix and v' the second
member of the preceding system; let v be the vector whose components are
C(qi). Then we get

w(t)/fJ(l) = (v, V-lV'). (6)

If qn(x) = x n the elements Vii of V are Vii = Ci+i-2 - lCi+i-1 for i,
j = I, ... , k while the components Vi of v are Ci-l for i = I, ... , k. This is a
generalization of Nuttall's compact formula. If the Xi are the roots of Pk
then v(x) = Pk(x), V = v' and we obtain Nuttall's formula for Pade
approximants.
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If we choose qn(x) = Pn(x), then we obtain a result which is closely
related to the matrix interpretation of Pade approximants [7]

where e is the vector all of whose components are equal to zero except the
first one which is one. J k is the tridiagonal matrix

where Bi and Ci are the coefficients of the recurrence relationship of the
orthogonal polynomials

From this formula, formula (3) can also be easily obtained. A similar formula
holds for w(t)/v(t).

Remark 13. If the Xi are not the roots of Pk then w(t)/v(t) only depends
on Co , ••• , Ck-I . Thus in formula (6) arbitrary values can be given to Ck ,..., C2k-I
and, in particular, Ci = 0 for i = k, ... , 2k - I.

Remark 14. Let A and B be the matrices whose coefficients are, respec
tively, C(qi q;) and c(x qi q;) for i,j = 0,... , k - I. Then V = A - tB and

00

w(t)/v(t) = L (v, (A-IB)i A-Iv') t i .
i~O

Thus Ci = (v, (A-IB)i A-IV') for i = 0,... , k - I. For Pade approximants this
relation is valid until i = 2k - I and from (7) we also get

i = 0,... , 2k - I.

Let us now show how to construct rational approximations of series with
arbitrary degrees in the numerator and denominator. We have

1 xn+ltn+l
--- = 1 + xt + ... + xntn + .
1 - xt I - xt
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Then

( 1 ) ( X
n
+

l
)f( t) = C = C + c t + ... + c t n + tn+lC .1 - xt 0 I n 1 - xt

Let P be the interpolation polynomial of the function (1 - xt)-l on some
points Xl"'" Xk. Thenf(t) can be approximated by

If we define the functional c(m) by c(m)(xi) = c(xm+i) = Cm+i for i = 0, 1,... ,
and if

w(t) = c(n+l) ( v(x; =~(t) ),

then the preceding approximation of f(t) can be written as

Co + cIt + ... + cntn + tn+lc(n+ll(p)

= C + c t + ... + c tn + tn+l w(t)
o I n v(t) (8)

which is the ratio of a polynomial of degree n + k in t over a polynomial of
degree k.

We also have

1
1 - xt

---"'---=-~1 - xt xt xn-Itn- l .

Let us apply the functional c to this identity. Then, since c(xi) = Ci = 0
for i < 0, we get

( 1) ( x-n
+

l
)f(t) = c = t-n+lc .

1 - xt I - xt

Let P be the interpolation polynomial of the function (l - xt)-l on some
points Xl'"'' Xn+k . f(t) can be approximated by

t-n+lc(x-n+lP).

Let v(x) = (x - Xl) '" (X - Xn+k), let c(-n+l) be defined by c(-n+ll(xi ) =
c(X-n+I+i) = C-n+l+i for i = 0, 1,... , with C-n+l+i = 0 if i < n - 1, and let w
be defined in the usual manner. It can easily be seen from its definition that w
has the degree k for n = 1, 2,....

Let EO be defined by
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(9)

which is the ratio of a polynomial of degree k in t over a polynomial of degree
n+k.

Formulas (8) and (9) can both be written as

n -(t)L Citi + t n+1~
i=O vet)

for n = 0, ±1, ±2,... with the convention that the sum is equal to zero if n
is negative.

If this approximant is written as [vet) 2::=0 citi+ tn+1W(t)]/v(t) it can easily
be seen that the relations between the coefficients of the numerator and the
coefficients of the denominator are exactly the same as those occuring for
Pade approximants. We shall designate by (p/q)I..t) these approximants in the
general case and by [p/qlt(t) the Pade approximants. p is the degree of the
numerator, q that of the denominator,fis the function which is approximated,
and t is the variable. There is, in general, no connection between the upper
and the lower part of the table of the (p/q) approximants as it occurs for the
Pade table. Let (k - l/kMt) be the Pade-type approximant and let v be its
denominator. Let us now consider the reciprocal series g defined by
f(t)g(t) = 1 and let (k/k - IMt) be the Pade-type approximant to g with 10
as denominator. It is easy to see that we can have (k - l/kMt) =
1/(k/k - IMt) only if v is such that c(v) = O. In the Pade table this property
is true since v is Pk •

If we look at the degrees of approximation of both parts of the table, as
we now will proceed, it is also obvious that, in the general case, no connection
can occur between the two parts of the table. However if (k/kMt) is the Pade
type approximant to f with v as denominator and if (k/kMt) is the appro
ximant to g with cov(t) + tw(1)(t) as denominator where

w(l)(t) = c(l) ( vex) - vet) )
x-t

then we always have

(k/kMt) = 1/(k/k)g(t).

Let us now proceed to the degree of approximation.
From the definition of c(n+1) it is easy to see that c(n+1)(p) is an approxi

mation to CCn+1l«1 - Xt)-1); thus

cCn+1l(p) = Cn+! + cn+2t + ... + Cn+ktk- 1+ O(tk)
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and it follows from (8) that

Co + cIt + ... + cntn + tn+! :gj - jet) = O(tn+k+l).

From (9) we only obtain that

If P is the Hermite interpolation polynomial then v must be defined as vex) =
(x - XI)k1 ••• (x - xn)kn • If the points of interpolation are the roots of the
polynomial p~n+l) which is orthogonal with respect to the functional c(n+l),
if these roots are distinct and if Pkn+l

) has the exact degree k then

f Citi + tn+l ~(t) = [n + k/klt(t) = jet) + O(tn+2k+1).
i=O v(t)

If the points of interpolation are the roots of p~+~+l) which is orthogonal
with respect to the functional c(-n+1), if these roots are distinct and if p~-::c+l)

has the exact degree n + k then

t-n+l w(t) = [kin + kJ (t) = jet) + O(tn+2k+1)vet) f .

Remark 15. The condition for Pr') to be of the exact degree k is that the
Hankel determinant

Cn+k- l - - - Cn+2k- 2

is different from zero. If the roots of the orthogonal polynomials are not
distinct similar results hold with P as the Hermite interpolation polynomial.
Finally if the points Xl'"'' Xm are arbitrarily chosen and if the remainding
points Xm+l ,... , Xk are the roots of the polynomial Pl:~..~) which is orthogonal
to the functional c(n+1) defined by c<n+l)(xi) = c<n+ll(xiu(x» then results
similar to those of Theorem 5 can be obtained.

Let us now study the convergence of such methods for obtaining rational
approximation of series when n or k goes to infinity.

Let Sn = L:=o cit i and vex) = ao+ alx + ... + akxk; then, by using (1),
it is easy to see that
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with

for n =,0, 1, ...

and
k

L Bi = 1.
i~O

In fact, since the roots Xi of v can depend on k and n, the B;'s also depend on
k and n. The convergence of these sequences of approximations when n or k
goes to infinity can be studied by using the Toeplitz theorem for the conver
gence of summation processes [18] and we immediately obtain

TgEOREM 7. Let the sequence {Sn} converge to j(t). The sequence
L:'~o C;fi + tn+lw(t)/v(t) converges to Jet) when n goes to infinity if

k

L I Bi I:::::; M "In.
i~O

The sequence converges to Jet) when k goes to infinity if

and

lim Bi = °
k->oo

for i = 0, 1,...

k

L I Bi I:::::; M Vk.
i~O

In practice it is a difficult matter to know if these conditions are satisfied
or not. However it is possible to get the following partial results:

THEOREM 8. If Xi :::::; °Vi and "In, k, if t ~°and if {Sn} tends to Jet) then
the sequences L::o Citi + tn+lw(t)/v(t) converge to j(t),for every fixed k ~ 0,
when n goes to infinity.

The proof is elementary since all the Bi are positive.

TgEOREM 9. Let {Xi} be an infinite sequence ofnegative numbers converging
to zero and let vex) = (x - Xl) ... (X - Xk)' If t ~ °and if {Sn} tends to Jet)
then the sequences L:'~o citi + tn+lW(t)/V(t) converge to Jet), for every fixed
n ~ -1, when k goes to infinity.

Proof Let Vk(X) = (x - Xl) ... (X - Xk) and let Blk)be the corresponding
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coefficients for fixed n ?" -1. Since Vk+l(X) = Vk(X)(X - Xk+l) it is easy to
see that

for i = 1,... , k,

and

B(k+l) - B(k)/(l x t)
k+1 - k - - k+l

with BJO) = 1.

If t ?" 0, Xi ~ 0 and limn->oo Xn = 0 then Btl ?" 0 and limk->oo B~k) = O.
Let us assume that limk->'" BJ~l = O. Then

If BJk) ~ M Vk then limk->oo BJk) = O. If such an M does not exist thus it is
impossible that ILo Blk

) = I since Blk) ?" O. In conclusion limk->oo Blk
) = 0

for i = 0, 1,... , and, by Theorem 7, the approximants converge to f(t) when
k goes to infinity and when n ?" - 1 is fixed.

Let us now study the case where the coefficients Ci are given by

Ci = rXi da(x),
a

(10)

where a is bounded and nondecreasing in the finite or semi-infinite interval
[a, b]. In that case the functional c is positive, that is, c(p) ?" 0 for every
polynomialp such thatp(x) ?" 0, "Ix E [a, b]. If the Xi belong to [a, b] and if t
is real and does not belong to [b-l, a-1] then (1 - xt)-1 is continuous on
[a, b] and the convergence can be studied by convergence results on classical
quadrature methods. Thus, for Pade approximants, the Xi belong to [a, b],
the coefficients AJkl of the quadrature formula are positive and the sequence
[k - l/k],(t) converges to f(t) for every t ¢ [b-1, a-1] when k goes to infinity.
The general convergence result is the following:

THEOREM 10. If the coefficients Ci are given by (10) and if the Xi are distinct
and belong to [a, b] then

lim w(t)/v(t) = f(t)
k"''''

if there exists an M independent of k such that
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then moreover,
H(o) t 2k

jet) - [k - l/k],(t) = Ili:~ (l _ gt)2k+1 ' gE[a,b].

311

"It E [0, d], d < R.

Proof. The first part is the classical theorem on the convergence of
quadrature processes: L:~1 I A~k) I < M while the second is the error term
of Gaussian methods.

Remark 16. From this theorem one can obtain bounds for the error. For
example if a = 0 and b = l/R, where R is the radius of convergence off
then

H(o)

Ijet) - [k - l/k],(t)1 ~ ~:~ I t 2k I "It E (- 00,0],
k

H(o) t 2k
Ij(t) - [k - l/k],(t)1 ~ Ji':P (l _ td)2k+1

Remark 17. For such series composite quadrature formulas, such as the
trapezoidal rule, can also be used to generate rational approximations.

3. EXAMPLES AND ApPLICATIONS

Let us first give an example to show that Pade approximants are not always
optimal. For this purpose we consider the series

t t 2 t 3

jet) = t-1 Log(l + t) = 1 - 2" + T - 4 + ....

For this series Theorem 10 applies and the sequence [k - l/klt(t) converges
to jet). Let us compare the relative errors of [1/2lt(t) and of the Pade-type
approximant with k = 4 constructed from the interpolation points Xi = -i-1

for i = 1,2,3, and 4. The construction of these two rational approximations
requires the knowledge of Co , ••• , C3 •

t [1/2] (3/4)

-0.8 -0.27 10-1 0.29 10-1 wet) 24 + 38t + l8t 2 + 19t3/6
-0.5 -0.12 10-2 0.73 10-3 vet) 24 + 50t + 35t 2 + 10t3 + t 4

0.1 -0.4610-6 0.92 10-7

0.5 -0.15 10-3 0.56 10-5 6 + 3t
1.0 -0.12 10-2 -0.13 10-3 [1/2]f(t) = 6 + 6t + t 2

1.5 -0.35 10-2 -0.77 10-3

2.0 -0.7010-2 -0.21 10-2

4.0 -0.27 10-1 -0.1410-1



312 C. BREZINSKI

Some other choices of the points Xi have been made for Pade-type appro
ximants but they produce less good numerical results. A very important
question for further research will be the study of optimal interpolation
points.

Let us now turn to rational approximations to the exponential function.
Because of the search for A-stable methods for integrating stiff differential
equations such approximations have a great practical interest and many
papers on this subject have appeared in the past few years. The fundamental
notion is the A-acceptability [6] which states that a rational approximation r
to e-t is A-acceptable if I r(OI :;( 1 '<It, Re(t) 3 O. It can be shown, by using
the maximum modulus theorem, that r is A-acceptable iff I r(it) I :;( 1 '<It E IR,
limj tl ...oo I r(t)1 ~ 1 and r is analytic in the right half part of the complex plane
[1, 15].

If we construct rational approximations to e-t by using Pade-type appro
ximants as described in Section 2 with the degree of the denominator greater
than the degree of the numerator and with the Xi in the left half part of the
complex plane then the second and the third conditions for the A-acceptability
are satisfied; it is, in general, difficult to know if the first condition is true
or not. However the following result can be obtained:

THEOREM 11. Let r be a Pade-type approximant to e-t with real coefficients,
whose numerator has degree k and whose denominator has degree n + k. Let

If the interpolating points Xi have negative real parts, if fJi ~ Oii for i =

P + 1, ... , k and 0 ~ Oii for i = k + 1, ... , n + k, where p is the integer part
of k/2, then r is A-acceptable.

Proof It follows the ideas of [5]. Since the points Xi have negative real
parts r is analytic in the right half part of the complex plane. If n 3 1 then
limltl ...oo I r(t)1 = O.

We have, by definition

r(t) = e-t + O(tk+l).

Thus
I r(it)1 2 = 1 + O(tk+l).

This last condition implies that Oii = fJi for i = 1,... , [k/2], where [p] denotes
the integer part of p. Moreover we get
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with the convention that fJt = °for i): k + 1. Thus if fJi ~ (Xi for
i = P + 1,... , n + k then I r(it)12 ~ 1.

Moreover if n = 0, fJk = b0
2 and (Xk = 0 0

2 which imply that
limltl-+co I r(t)1 ~ 1.

This theorem is related to Theorem 3.2 of Norsett [15]. It seems to be
difficult in practice to know if this condition is satisfied or not for fixed nand
for every k even by applying Norsett's results although the C-polynomial
exists.

We are now going to study a very interesting class of Pade-type approxi
mations to the exponential function. If, for fixed k, we choose Xt = -k-1

for i = 1'00" k then we obtain rational approximations of the form
w(t)j(1 + tjk)k which are very useful for integrating a linear system of
ordinary differential equations since the denominator can be factored. Such
approximations have been recently studied by Saff, SchOnhage, and Varga [17]
but with a different numerator.

Let us first study the convergence of such approximations:

THEOREM 12. When k goes to infinity w(t)j(1 + tjk)k converges to e-t for
every t ): O.

Proof. We shall use the second part of Theorem 7 with n = -1. It is
obvious that Bt ): 0; thus we only have to prove that the B/s tend to zero
when k tends to infinity since the series converges for every t ): O. Since
Bt = Ottk-tjv(t) and since v(t) tends to et we only have to study the conver
gence of Ottk-t to zero. We get

k ( I ) ( i-I ) ttv(t) = I + t + L 1 - - ... 1 - -- """"T
t~2 k k 1.

Thus

( 1) ( k - i-I) I
at = 1 - k ... 1 - k (k _ i)! ' i = 0, 1,... , k - 2,

It must be notice that we have to study the convergence when k goes to
infinity for a fixed subscript i. Thus

and limk-+co attk- t = 0 for i = 0, 1'00' and Vt ): 0 which ends the proof.
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An interesting question about these approximations would be to study if
the convergence has a geometric character like the approximations proposed
in [17].

Let us now turn to the A-acceptability of these approximations. It seems
difficult to know if these approximations are A-acceptable for every k.
However, by applying Theorem 11, it is easy to see that the condition is
satisfied for k = 1,... ,4. Thus, the following approximations to e-t are
A-acceptable:

1 +t' (l + t12)2 '
1 - t 2/6

(l + t13)3 '
1 - t 2/8 + t3/48

(l + t14)4

The same is true for the diagonal Pade-type approximants

1
1 + t '

1 - t 2/4 1 - tl2
(l + t12)2 = 1 + tl2 = [l/l],(t),

1 - t 2/6 + t 3/27
(l + t13)3

The following approximant is (1 - t2/8 + t3/48 + t4/256)/(1 + tI4)4. We get

I r(it)1
2

= 1 + 2304 rV(it)12

which shows that this approximant is not A-acceptable. The approximants
given in [7] are not A-acceptable for k = 2, ... , 7 because the constant term
of the numerator is greater than 1.

Let us now describe the application of rational approximations to the
Laplace transform inversion. Let/be the Laplace transform of g

f(t) = IX! g(x) e-xt dx.
o

If the series expansion of / is known, then a method due to Longman [10]
for finding g consists in constructing some Pade approximant to / and
inverting it. The Laplace transform inversion of a rational function needs
either the partial fraction decomposition (that is the computation of the
roots of the denominator) or a special trick due to Longman and Sharir [12]
involving the summation of an infinite series.

The same can be done with Pade-type approximants instead of Pade
approximants. The advantage will be the knowledge as well as the arbitrary
choice of the poles. If the interpolating points are distinct, for example, then,
as we saw in Theorem 1

with
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Thus the Laplace transform inversion of w(t)/v(t) will immediately provide
an approximation of g given by - L:'=l Alklxile"'/"".

Let us show, by example, how this method works. If tf(t) = e-t then
g(x) = H(x - 1). We shall construct approximations to tJ(t) with the same
degree k in the numerator and in the denominator, then we shall divide by t
and finally invert.

We shall compare the Pade-type approximant for k = 2 with Xl = -1,
X 2 = -1/3 (formula I), the Pade-type approximant with Xl = -1/4,
X 2 = -1/3 (formula 2) and the Pade approximant [1/1] (formula 3). We get

formula 1: I - !e-'" - ie-3
"',

formula 2: I + 8e-4'" - ge-3"',

formula 3: 1 - 2e-2"'.

X formula I formula 2 formula 3

0 -1.5 O. -1.
0.5 0.3463 0.0745 0.2642
1.0 0.7960 0.6984 0.7293
1.5 0.9192 0.9198 0.9004
2.0 0.9606 0.9804 0.9634
2.5 0.9782 0.9954 0.9865

Let now tJ(t) = exp( -tl(1 + at)1/2). If we invert the Pade-type approximant
with k = 2, Xl = -1/4 and X 2 = -1/3 we obtain, for a = 0.1

I + lO.4e-4'" - 1O.8e-3"'.

The numerical results can be compare with the method of Longman using
Pade approximants [11]

X (2/2) Pade [2/2] exact values

0 0.6 -0.8182 0
0.5 -0.0023 0.2675 0.0274
1.0 0.6528 0.7049 0.5475
1.5 0.9058 0.8811 0.9290
2.0 0.9767 0.9521 0.9944
2.5 0.9945 0.9807 0.9997

The results obtained by a Pade-type approximant using Co, CI , and C2 are
better than those obtained with a Pade approximant using Co , ... , C4 .
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4. CONCLUSIONS

In this paper a systematic way for obtaining rational approximations
to formal power series has been studied. Many aspects of the problem have
not been treated and numerous questions have no answer at the present time.
For example, the algorithmic part has not been developed, the algebraic
properties of the approximants remain to be studied as well as the existence
of best interpolation points, etc. Approximatory quadrature methods should
be similarly studied.

Some generalizations are of interest, the most important of which seems
to be formal power series in several variables.

Note added in proofs. Recently many authors independently used special cases of Pade
type approximants. They are: S. A. Gustafson, Computing. 21 (1978), 53-70; A. Iserles,
SIAM J. Num. Anal. (to appear); E. V. Krishnamurthy et al., Proc. Indian Acad. Sci.
819 (1975),58-79; G. Lopes, Soviet Math. Dokl. 19 (1978), 425-428; S. P. Norsett, Numer.
Math. 25 (1975), 39-56; A. Sidi, Math. Compo (to appear); A. C. Smith, Utilitas Math.
13 (1978), 249-269.
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